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Abstract:. Multi-photon scanning microscopy provides a robust tool for optical sectioning, 
which can be used to capture fast biological events such as blood flow, mitochondrial activity, 
and neuronal action potentials. For many studies, it is important to visualize several different 
focal planes at a rate akin to the biological event frequency. Typically, a microscope is 
equipped with mechanical elements to move either the sample or the objective lens to capture 
volumetric information, but these strategies are limited due to their slow speeds or inertial 
artifacts. To overcome this problem, remote focusing methods have been developed to shift 
the focal plane axially without physical movement of the sample or the microscope. Among 
these methods is liquid lens technology, which adjusts the focus of the lens by changing the 
wettability of the liquid and hence its curvature. Liquid lenses are inexpensive active optical 
elements that have the potential for fast multi-photon volumetric imaging, hence a promising 
and accessible approach for the study of biological systems with complex dynamics. 
Although remote focusing using liquid lens technology can be used for volumetric point 
scanning multi-photon microscopy, optical aberrations and the effects of high energy laser 
pulses have been concerns in its implementation. In this paper, we characterize a liquid lens 
and validate its use in relevant biological applications. We measured optical aberrations that 
are caused by the liquid lens, and calculated its response time, defocus hysteresis, and thermal 
response to a pulsed laser. We applied this method of remote focusing for imaging and 
measurement of multiple in-vivo specimens, including mesenchymal stem cell dynamics, 
mouse tibialis anterior muscle mitochondrial electrical potential fluctuations, and mouse brain 
neural activity. Our system produces 5 dimensional (x,y,z,λ,t) data sets at the speed of 4.2 
volumes per second over volumes as large as 160 x 160 x 35 µm3. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Multi-photon microscopy enables high resolution imaging and intrinsic optical sectioning at 
depth due to use of near-infrared and infrared laser multi-photon excitation processes. This 
has enabled critical insights into real-time biological function of neural networks in the brain; 
cell trafficking and microenvironment properties in the bone marrow; and regenerative 
processes in many tissues. The size scale of these biological efforts dictates tradeoffs between 
scan speed, resolution, and field of view. When studying events such as cell adhesion, 
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vascular flow patterns, or homing, rapid scanning of a relatively small volume is needed. In 
addition, for phenomenon such as neural firing, multiple events occur at different depths of 
the volume under study that need to be rapidly accessed [1,2]. In all of these situations, rapid 
lateral and axial scanning are needed to accurately capture biological dynamics. Lateral 
scanning that couples a galvo-driven slow axis with a fast axis using a resonant galvo or 
polygonal mirror can create a 2D scan field at 30-120 Hz or more depending on the field of 
view. Rapid axial scanning can reproducibly and precisely translate that to several volumes 
per second depending on the number of Z positions required. 

Many point scanning microscopes generate an axial stack using mechanical displacement 
of the sample with a stepper motor [3], which are very precise and have several millimeters of 
travel, but are too slow for some live imaging applications. To rapidly scan during imaging, 
the objective or stage can be moved using a piezo mount, which works at several tens of 
hertz, but is limited by inertial forces that cause instability at higher speeds due to the weight 
of the objective lens. Another limitation of mechanical scanning is the addition of depth-
dependent optical aberrations, especially spherical aberrations [4]. Optical strategies that use 
simultaneous multi-focal imaging are also possible [5–8], but require highly specialized 
optical setups and often have optical performance trade-offs. Remote focusing is one of the 
simplest methods of rapidly modulating the focal plane using an active element remotely 
from the sample to adjust the axial focal plane. A number of technologies and active elements 
to use this process in point-scanning microscopy have been proposed [9], such as a voice coil 
motor [10], an acousto-optic modulator [11], a TAG lens [12], a deformable mirror [13,14], a 
thermal lens [15], an Alvarez lens [16], and a liquid lens [17–23]. Liquid lens technology is 
an inexpensive and stable remote focusing technology, and uses either hydraulic pressure 
[20–22] or the electrowetting phenomenon [17–19] to change the optical power of the lens. 
Liquid lens remote focusing is an easy to implement and affordable method for fast inertia-
free volumetric imaging. However, high energy pulses required for multi-photon microscopy 
have drawn some concerns about long term use of liquid lenses with ultrafast lasers. In 
addition, adoption has been slow due to perceived challenges arising from suspected optical 
aberrations and difficult calibration of the liquid lens. 

In this work we use an electrowetting liquid lens for remote focusing in multi-photon 
microscopy. Electrowetting occurs at the boundary of two immiscible liquids with different 
refractive indices that form an electrically adjustable curvature and hence an adjustable 
focusing power [17], with a settling time of a few milliseconds - a timescale useful for many 
biological phenomena. We measured the aberrations using a Shack-Hartmann wavefront 
sensor (SHWFS), and characterized hysteresis of defocus and several Zernike modes of the 
lens using a ramp signal with different input frequencies. We further measure the step 
response of the liquid lens. We calibrated our system using a test target made of fluorescent 
beads in a gel compared with mechanical Z-scanning, and were able to rapidly and 
reproducibly scan volumes. These measurements and analyses enabled us to measure and 
characterize the wavefront, in response to the input voltage. After the calibration step, we 
applied this method to multi-color volumetric imaging of live cells, blood flow in the skull of 
a live mouse, mouse tibialis anterior (TA) muscles, and neural activity in the mouse cerebral 
cortex. 

2. Methods 

2.1. Optical setup 

Our microscope (Fig. 1) uses a Ti:Sapphire laser (Coherent Chameleon Ultra II) with a 
wavelength range of 680nm – 1080nm, and intensity modulation using a Pockels cell 
(Conoptics). A second femtosecond fiber laser (Calmar Cazadero) source was used for testing 
the thermal reponse of the lens. The fiber laser source produces 1550 nm, 370 fs pulses which 
were frequency doubled to produce 775 nm. A pinhole was used at the focus of our beam 
expansion telescope to improve the uniformity and Gaussian properties of the beam. We 
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where M is the magnification from the sample plane to the image plane right after the liquid 
lens, n is the refractive index of the immersion medium, fL3 and fLL are the focal lengths of 
lens L2 and the liquid lens respectively. We calculate a theoretical 36.8 μm total focal length 
displacement given the optical power range of the liquid lens. This range was selected to 
match the 2D scanning rate of our system (110 frames per second) to provide a continuously 
scanned volume for a reasonable number of volumes per second (4.2 volumes/s, 26 frames 
per volume) for our biological imaging targets with Nyquist sampling. For other applications 
such as brain neural activity measurement in multiple cortical layers, this range could be 
altered to be as large as ~100 µm by changing the focal length of L3 and magnification of the 
system to provide appropriate axial scanning. 

2.2. Preparation of the fluorescent beads in a polyacrylamide gel 

To produce a volume of point sources fixed in space we made a poly-acrylamide gel mixed 
with 200 nm fluorescent Tetraspec beads (Invitrogen T7280). The gel was made by 
combining 45 μl Tetraspec beads (diluted 1:50 in ultrapure water), 45 μl 30% Acrylamide 
(Bio-rad 1610156), 2 μl Ammonium persulfate, and 0.2 μl TEMED. The mixture was 
transferred to the well of a coverglass-bottom petri dish and imaged after the gel solidified. 

2.3. Preparation of the cell sample 

Mesenchymal stem cells (MSCs), isolated from a wild-type mouse, were grown on a 35mm 
Petri dish in growth medium (α-MEM, 10% fetal bovine serum, Penicillin Streptomycin, L-
glutamine). MSCs were stained with lipophilic membrane dye DiD according to the 
manufacturer’s protocol (Invitrogen) 30-40 minutes before imaging. Cells were transferred to 
a hemocytometer and imaged in suspension, with a heating strip and an infrared thermometer 
to maintain the temperature of the cells at 37° C. 

2.4. Preparation of the tibialis anterior sample 

The tibialis anterior (TA) muscle was extracted from a transgenic mouse with C57Bl/6 
background ubiquitously expressing mitochondrial Dendra2 green/red photoswitchable 
monomeric fluorescent protein (Jackson Laboratory, #018385) [26], 1 hour before imaging. 
We permeabilized the muscle in buffer 1 containing (7.23 mM K2EGTA, 2.77 mM 
CaK2EGTA, 20 mM imidazole, 20 mM taurine, 5.7 mM ATP, 14.3 mM PCr, 6.56 mM 
MgCl2-6H2O, 50 mM MES, 100 µg/ml Saponin) for 30 minutes at 4° C. The muscle was then 
incubated with 50 nM TMRE in a buffer 2 (105 mM MES, 30 mM KCl, 10 mM KH2PO4, 5 
mM MgCl2- 6H2O, 0.5 mg/mL BSA, 0.5 M EGTA), for 15 minutes at 4° C. At the same time 
one drop of NucBlue (life technologies - R37606) dye was also added to the buffer to stain 
the nuclei. Following incubation with TMRE and NucBlue, the TA was rinsed in buffer 2 for 
15 minutes. The TA was then removed and fixed to a dissection-gel petri dish at proximal and 
distal tendons. For imaging, the TA was submerged in buffer 2 and the following substrates 
were added to stimulate mitochondrial respiration: glutamate (10 mM), malate (5 mM), ADP 
(2.5 mM). To increase the rate of fluctuations, FCCP (1µM) was added. 

2.5. Intravital imaging 

For skull imaging, one hour before surgery a dose of Meloxicam (1mg/kg) was injected 
subcutaneously to the mouse. The mouse was initially anesthetized using 4% isoflurane (100 
ml/min oxygen flow), and restrained using a 3D printed stereotaxic holder. The rate of 
isoflurane was then reduced to 1.5% during imaging. A 20 μL dose of 70 kDa rhodamine-B 
dextran (Nanocs) was administered through retro-orbital injection, to visualize the 
vasculature. Five minutes before making an incision, 50 μL of 0.25% bupivacaine was locally 
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applied as analgesia. An incision was made on the scalp from between the eyes toward both 
the ears to make a flap. The periosteum layer was removed, and the area of imaging was 
cleaned using a cotton swab; immediately sterile phosphate buffered saline (PBS) was applied 
to the incision site. The animal was placed under the microscope objective and sterile PBS 
was added to fill the gap between the skull and the objective lens. After the imaging session, 
the animal was euthanized using CO2 and cervical dislocation. 

For mouse neural activity experiments, four weeks prior to imaging, the mouse was 
transduced with a viral construct encoding the red fluorescent calcium sensor jRGECO in 
neurons, via direct cortical injection through a cranial window that was surgically placed 
above the barrel cortex (3mm diameter, 120um thickness). First, the animal was anesthetized 
using isoflurane (4% induction and 1.6% maintained). A craniotomy was performed above 
the barrel cortex (AP: −2, ML: −5 from bregma), and a 1 µl dose of pAAV.Syn.NES-
jRGECO1a.WPRE.SV40 [27] virus was injected (addgene: #100854; Titer: 4.1 x 1013 
genome copies/mL), at a rate of 0.2 µl/min using a glass micropipette (Eppendorf Celltram 
Oil pump). A coverslip glass was positioned and cemented (UV cured dental cement, Henry 
Schein) on top of the craniotomy after infusion of 1% agarose on the surface of the exposed 
dura. Before imaging, the animal received one dose of a cocktail of ketamine/xylazine 
(156.25 mg/kg ketamine, 6.25 mg/kg xylazine) as anesthesia and placed on a 3D printed 
stereotaxic holder. Air blow stimulation were given through a PVC tube oriented towards the 
contralateral whiskers to the craniotomy. 

All animal procedures and experiments were approved by the UGA Institutional Animal 
Care and Use Committee (IACUC). 

3. Characterization of the liquid lens 

3.1. Characterization of the liquid lens 

We performed wavefront measurement to specifically characterize the optical aberrations 
produced by the liquid lens. For this purpose the liquid lens was directly conjugated to the 
SHWFS without passing through the rest of the system to eliminate system aberration 
contributions to the measurement. The acquired wavefronts from the SHWFS were 
reconstructed using the methods described in [28]. For conversion of the extracted defocus 
term to optical power in diopter unit we use the following formalities. The defocus term in 
radial coordinates has the following form [29]: 

 ( ) ( )2
3, 3 2 1z r c rθ = −  (2) 

where c3 is the coefficient of the Zernike mode. We can write a general term for the focal 
distance f of a spherical surface [30] (Fig. 2): 

 
( )21 tan

2 tan

r
f z

α
α

−
= +  (3) 

 tan 4 3
dz c r
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α = =  (4) 

where α is the angle between the incident light and the perpendicular line from the center of 
the curvature. Combining 3 and 4 we get 
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Fig. 8. Volumetric imaging of calcium activity in the mouse barrel cortex. (A) shows a pre-
processed volumetric frame from the timelapse. The volume dimensions are 80 µm x 80 µm x 
25 µm (x,y,z). After 3D registration several ROIs were located in the data set using mean 
volumetric fluorescence intensity, shown in (B). From each ROI, the intensity fluctuation is 
derived and background normalized (F0) to obtain the DF/F0 calcium activity fluctuations, 
shown in (C). The red ticks (STIM) indicate the timing of an air blow stimulation on the 
contralateral whiskers to the recording site. 1050 nm excitation light was used for imaging. 
Visualization 4 is available in the supplemental information. 

5. Conclusions

In conclusion, we presented characterization and application of a liquid lens for fast 
volumetric imaging of in vivo samples. One main concern for using the liquid lens is the 
potential for optical aberrations due to the curvature produced by the electrical potential. Here 
we used a wavefront sensor for characterizing wavefront error produced by the liquid lens. 
We show that other than the desired defocus, astigmatism is the main aberration error in the 
system; which was minimized by fine alignment of the liquid lens, resulting in a minimal 
magnitude. Another major concern with using liquid lens technology for remote focusing of 
femtosecond pulsed lasers is the effect of high powered pulses on the performance and 
stability of the lens. We therefore measured the temperature of the body of the device and its 
hysteresis response after 2 hours of continuous exposure and did not observe a significant 
increase in the temperature, alteration of focusing speed, or alteration of focusing accuracy. 
We also measured the full range step response of the device and a settling response time of 92 
ms. To speed up the axial scanning and avoid over/undershoots, we used a triangular 
waveform and an electrical low pass filter which eliminates the high frequency digitization 
effect. We then calibrated the remote focusing method versus a precise mechanical scanning 
method, and calculated the ratio of voltage to focal shift. And finally, we applied this method 
to several relevant in-vivo dynamically varying samples such as cells, muscle mitochondrial 
activity, intravital imaging of blood flow in the skull, and neural firing in the barrel cortex. 
Liquid lens technology has recently attracted attention for applications such as head-
mountable brain neural activity measurement [39], or endoscopic imaging by providing both 
lateral [40] and axial [41,42] scanning. Due to their high potential for low cost and stability, 
many different methods of producing liquid lenses have been proposed. All of these methods 
and devices require careful characterization to generate high quality reproducible results. The 
characterization and calibration methods performed in this paper can be applied to those and 
other similar applications. 
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